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Abstract: The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout
operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire
experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire
effects. Heat flux measurements collected at multiple scales with multiple ground and remote sensors
illustrate the spatial and temporal complexity of the fire progression in relation to fuels and fire
effects. We demonstrate how calculating cumulative heat release can provide a physically based
estimate of fuel consumption that is indicative of fire effects. A map of cumulative heat release
complements estimates of ground cover constituents derived from post-fire hyperspectral imagery
for mapping immediate post-fire ground cover measures of litter and mineral soil. We also present
one-year and 10-year post-fire measurements of overstory, understory, and surface conditions in a
longer-term assessment of site recovery. At the time, the Cooney Ridge Fire Experiment exposed
several limitations of current state-of-science fire measurement methods, many of which persist in
wildfire and prescribed fire studies to this day. This Case Report documents an important milestone
in relating multiple spatiotemporal measurements of pre-fire, active fire, and post-fire phenomena
both on the ground and remotely.
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1. Introduction

Fire behavior (e.g., reaction intensity, spread rate, flame height, and residence time) is related
to first-order fire effects such as fuel consumption, stem and soil heating, crown scorch, and smoke
production [1–3]. Fire behavior also has significant influences on second-order fire effects (e.g.,
vegetation recovery and succession, erosion, and hydrology) [4], with the effects of a high severity
wildfire lasting a decade or longer in forested ecosystems [5].

The complexity of fire behavior makes it difficult to collect spatially explicit measurements
that can be related to first- or second-order fire effects [6,7], yet such measurements are critical for
understanding the ecological effects of fire. Prior to the late 1990s, much of the data used to describe
the behavior and characteristics of wildland fires were derived from post-fire observations, anecdotal
evidence, or modeling, rather than from in situ measurements of fire phenomena. When used to
develop cause–effect relationships with respect to first- and second-order fire effects, these inferences
frequently become circular. That is, the causal agents are described by measuring or observing the
effects and are then presented as independent variables with which to draw relationships. Several
challenges confront the manager or investigator with respect to in situ measurements of the fire
environment. First, it is often difficult to deploy field personnel to locations ahead of a wildland fire
that will progress unpredictably. Second, the technology required to characterize the fire environment
in such a way as to provide robust thermodynamic data has only recently been developed, and the
deployment of these technologies has been largely limited to exploratory research. Finally, such
technology that does exist for in situ measurements of the fire environment can only provide point
or, at best, spatially disconnected observations. Radiometric measurements of heat transfer currently
provide the best means to link fire behavior to fire effects using currently available technologies [8].
Although both convection and radiation are important components of heat transfer [9], radiant heat
can be measured remotely, making it more conducive to quantification as a continuous, spatially
explicit variable [10].

The ability to create accurate maps of both fire behavior and fire effects could substantively
enhance scientists’ and land managers’ ability to associate active fire characteristics with the immediate
and long-term response of the post-fire environment. A more complete understanding of these
associations could be used either to identify the range of fire behavior characteristics most likely to
meet desired prescribed fire objectives or to develop a long-term management plan for a post-wildfire
landscape. However, wildland fire is an extremely complex radiant emitter, so any improvements
to our understanding of these associations is dependent, first, on a complete characterization of the
assumptions and associated error structures inherent to radiometric measurements of fire in wildland
fuelbeds on variable terrain and under constantly changing meteorological conditions.

The Cooney Ridge Fire Experiment was designed by fire scientists but coordinated with the
incident commander and fire suppression crews managing the Cooney Ridge wildfire incident in
2003. The Cooney Ridge Fire was just one of many explosive wildfire incidents caused by multiple
lightning strikes in western Montana during the extremely dry summer of 2003. It was also one of
many wildfires simultaneously being actively suppressed. From a fire management perspective, it was
conducted as a “burnout” operation to achieve the fire suppression objective of reducing hazardous
fuels that could flare up later if left unattended. From a fire science perspective, it was the first
“rapid response” research project of its kind. Prior studies [11,12] have already described the values
and challenges of conducting rapid response research on the Cooney Ridge Fire and other wildland
fires from an organizational and logistical perspective. This research is inherently hazardous, as it is
conducted during active wildfire incidents but with appropriate safety measures, and it yields data
from before, during, and after fire to better understand fundamental fire processes towards the goal of
advancing fire science. The Cooney Ridge Fire Experiment datasets demonstrate how a great variety
of multi-scale, spatiotemporal datasets can be collected to tell us something relevant to the fire event
and, when considered together, provide synergy in terms of the greater information that can be gained
and the lessons learned.
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Our objective in this Case Report is to present the primary active and post-fire datasets collected at
the Cooney Ridge Fire Experiment that, by virtue of co-location and their complementary spatial and
temporal scales, provide the opportunity to relate fire effects to fire radiative energy density (FRED)
in a spatially explicit manner. Our primary purpose is to demonstrate that quantitative estimates of
FRED obtained by integrating a time series of fire radiative flux density (FRFD) measurements can be
combined with post-fire reflectance maps to better characterize the spatial heterogeneity of fire effects,
such as percent litter and exposed mineral soil cover [13]. The main reason for choosing to map these
variables in this study is that they are important variables for land managers concerned with post-fire
rehabilitation treatments to mitigate erosion and promote vegetation recovery [14–16].

2. Materials and Methods

2.1. Study Area

The Cooney Ridge wildfire burned 9600 ha in western Montana from 8 August to 15 October, 2003.
A Rapid Response Research team worked with the Incident Command Team to conduct a burnout
operation at a safe location within the wildfire perimeter. The chosen site for the experimental burnout
was located 26 km southeast of Missoula, Montana (Figure 1) on private industrial forest-owned
timberland. The elevation ranged from 1317 to 1446 m at the site, situated on a northeast aspect with a
30% slope (Figure 1). The stand was co-dominated by subalpine fir (Abies lasiocarpa) and Douglas fir
(Pseudotsuga menziesii), with a small component of western larch (Larix occidentalis), and understory
shrubs comprised primarily ninebark (Physocarpus malvaceus) and snowberry (Symphoricarpos albus).

Figure 1. Location of the experimental fire site (indicated by the black square) immediately east of the
Cooney Ridge wildfire perimeter in western Montana, USA. The 1 m resolution National Agriculture
Imagery Program (NAIP) image in the background has been rotated to reconstruct the oblique view
from the ground-based thermal camera site. The yellow rectangle indicates the spatial extent of the
airborne thermal imagery analyzed in this study.

Figure 1 illustrates the spatial location of in situ ground measurements collected pre-fire (fuel
plot), during the fire (fire behavior packages and autonomous environmental sentries), and post-fire



Fire 2018, 1, 10 4 of 32

(fire effects plots). The full suite of datasets collected both on the ground and remotely in 2003 and
years later for monitoring site recovery is illustrated pictorially in Figure 2.

Figure 2. Overview of the different types of pre-fire, active fire, and post-fire datasets collected at the
Cooney Ridge Fire Experiment on 3 September 2003, and years of data collection. LWIR: Long-Wave
Infrared; MIR: Middle Infrared; GPS: Global Positioning System; FBP: Fire Behavior Package; AES:
Autonomous Environmental Sentry.

2.2. Fuels and Vegetation

Pre-fire surface fuels and vegetation were characterized on 3 September 2003 (day of the burn)
within a single fuel plot situated just upslope of the middle of the northernmost ignition line, which
was the last to be lit with drip torches along the bottom slope, after the fire failed to back downslope
into the fuel plot from initial ignition lines along the southeast and southwest ridgelines (Figure 1).
The plot center was monumented with rebar and a numbered tag, and the location (UTM), slope (%),
slope position, and aspect of the plot were recorded. Four plot pictures were taken in the cardinal
directions, approximately 3 m from the plot center, facing the plot center.

Fuel loads were measured pre- and immediately post-fire in the fuel plot, such that the
consumption of fine and coarse woody debris, litter, and duff could be estimated. Prior to burning,
two 22.9 m planar intercept fuel transects [17] were established, beginning at the plot center and
radiating out north and east [17]. Each transect was monumented by placing rebar at the end and
middle to aid in the post-fire re-installation of the transects. On each transect, we measured the slope
(%) and counted the number of 1 h (<0.64 cm) and 10 h (0.64–2.5 cm) fuels along 1.8 m, and of 100 h
(2.5–7.6 cm) fuels along 3 m of the transect. We measured the diameter and decay class for 1000 h
(>7.6 cm) fuels along 19.8 m of the transect. At two locations on each transect, we recorded the average
height of the vegetation in the surface fuel layer (0–1.8 m tall) and total forest floor depth (duff and
litter layers combined) using 25 cm spike nails flush with the top of the litter layer. Lastly, we collected
ten fuel moisture samples for each of the following components: 1, 10, and 100 h fuel classes, duff,
litter, and live fuels. The samples were sealed in plastic bags to prevent moisture loss. Post-fire fuel in
the plot was measured the next day after smoldering combustion had ceased. After the fire, the two
fuel transects were re-installed and resampled using the same techniques described above. Fine and
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coarse woody debris and litter consumption were determined by differencing the pre- and post-fire
measurements, and forest floor consumption was determined by measuring the length of the spike
nail exposed.

Trees were tallied in the fuel plot by tree species, size class, and condition both pre- and post-fire
to capture fire-induced tree mortality. Tree diameter at breast height (DBH, 1.37 m above ground),
species, and status (live/dead) were recorded for each tree ≥12.7 cm DBH within a 0.04 ha circular
macroplot; we also measured total tree height and crown base height. Saplings (<12.7 cm DBH and
≥1.37 m tall) were recorded by species, status, and diameter class on a 0.01 ha circular nested microplot.
Seedlings were counted by species, status, and height class on the microplot. Post-fire vegetation was
sampled 8 days later on 11 September 2003 to allow time for needle damage due to crown scorch and
consumption to become more evident. After re-establishing the plot center, post-fire sampling was
conducted using the same techniques as described above. In addition, percent crown volume scorch
and scorch height were recorded for each tree in the fuel plot.

Fuel and vegetation data were entered into a FIREMON database [18]. FIREMON was used to
calculate fuel loading and summarize vegetation. Fuel samples were weighed within 8 h of collection
for wet weight, dried for 8 days at 100 ◦C, and weighed to determined fuel moisture percentage by
size class at the time of the fire.

On 21 September, 2003 thirteen fire effects plots, within which fifteen 1 m × 1 m square subplots
were nested in a 3 × 5 grid, were systematically laid out at 20–40 m intervals over the site (Figure 1),
following a spatially nested sampling design [19]. The north-central plot was anchored over the
fuel plot, and the center fire effects plot was also monumented for longer-term monitoring. Cover
fractions of surface materials—soil, ash, char, green vegetation, and non-photosynthetic vegetation
(NPV) including litter and other woody debris—were ocularly estimated at the 195 subplots by four
trained field technicians. The geolocations of the 13 plot centers were logged with a Trimble ProXR
global positioning system (GPS) recording at least 150 positions that were differentially corrected and
averaged. All geospatial datasets were projected to UTM Zone 12N (NAD83, GRS 1980).

To monitor site recovery, 6 of the 13 fire effects plots were revisited on 10, 13, or 14 July 2004,
and revisited again on 13 August 2013. The site was last revisited on 7 November 2016 to complete a
photopoint time series of the fuel plot beginning just prior to the fire experiment on 3 September 2003.

2.3. In Situ Heat Flux and Weather

Fire videography, heat flux, and surface weather data were collected from ground-based sensors
installed immediately adjacent to the 0.04 ha fuel plot (Figure 1). Convective and radiative heat
flux were measured in situ with thermocouples and side-viewing radiometers mounted in Fire
Behavior Packages (FBP) deployed just prior to the burnout experiment. The FBP system, consisting of
temperature, air flow, and energy sensors for quantifying energy and mass transport in wildland fires,
was used to measure fire spread and intensity [20]. The system contains a programmable datalogger, a
Medtherm Dual Heat Flux sensor (Model 64-20T) of the Schmidt-Boelter style that provides incident
total and radiant energy flux, a type K fine wire thermocouple (nominally 0.025 mm diameter wire),
a custom-designed narrow angle radiometer (NAR) [21], and two pressure-based flow sensors, one
oriented to sense horizontal flow and one to sense vertical flow [22]. The sensors were calibrated prior
to deployment according to customized procedures [20]. The fine wire thermocouple has a response
time of approximately 0.01 s (Omega Engineering) and was used to sense flame presence and residence
time. Convective heat flux at the sensor face was calculated by taking the difference between the total
and radiant sensors after correcting for transmission through the radiometer window [3].

Also, just prior to the experimental burnout, two Autonomous Environmental Sentries (AES)
were deployed on either side of the fuel plot next to the two FBP (Figure 1). The two AES consisted of
a custom-designed data logger, broad-band radiometer (0.5–12.50 µm), conventional cup anemometer,
wind vane, and relative humidity/temperature sensors. Ambient air temperature and relative humidity
were recorded at 1.85 m height above ground, as were wind speed and wind direction. Radiant
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temperature and radiant heat flux were recorded by the radiometer at 30 s intervals looking downward
towards the ground at an angle of 45◦, which translates to an area of ~2 m radius. Brightness
temperature was calibrated in the laboratory using an equivalent blackbody reference to allow the
estimation of the near-surface fire radiative flux density (FRFD). Integrating FRFD over time gives the
fire radiative energy density (FRED) which, through laboratory and field experiments, has been shown
to be related to total fuel consumption mediated by the radiative fraction, fuel moisture content, fuel
distribution, and other combustion parameters [23].

2.4. Thermal Infrared Imagery

Ground-based. A sequence of low-oblique, middle infrared (MIR) images was collected on
3 September 2003 between 15:50 and 17:18 local Mountain Daylight Time (MDT) from a ground-based
thermal imaging system (CMC Electronics Cincinnati model TVS-8500) installed on an opposing
hillside located 785 m northeast and 176 m above the study site (Figure 1). From this vantage point,
the instantaneous field of view (IFOV) of the TVS-8500 provided a nominal ground resolution of
0.8 m. The TVS-8500 has a “twin-peaks” spectral response function, responding to MIR wavelengths
between 3.4 µm and 5.1 µm with a CO2 emission filter between 4.1 µm and 4.5 µm (Table 1). With
the exception of two gaps in acquisition (13 and 5 min), MIR images collected at 2 frames per minute
were coregistered and georegistered [24]. Although the 0.04 ha fuel plot subtended 563 pixels in the
field of view of the TVS-8500, nearly half of the plot (203 pixels) was obscured by two tree crowns in
the foreground.

Active fire pixels (i.e., thermal pixels likely containing flaming and/or smoldering combustion
processes) were identified in the low-oblique MIR imagery using a dynamic detection threshold:

T ≥ Tr + 4δTr (1)

where T is the brightness temperature of an individual pixel, and Tr and δTr are the mean and
mean absolute deviation of brightness temperatures within a region, r, containing 848 pixels located
adjacent to the fuel plot that did not burn. In most applications, the use of a relative detection
threshold is designed to account for spatial variations in surface temperatures due to solar heating.
Here, Equation (1) accommodates the varying lower limits of detector sensitivity in different camera
operating ranges.

The radiant heat flux emitted by combustion components in each active fire pixel detected in the
low-oblique MIR imagery is estimated using the MIR radiance method [25] as follows:

FRFD =
σ

a

(
L f − Lb

)
(2)

where σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4), a is a power-law coefficient
(2.45 × 10−9 W m−2 µm−1 sr−1 K−4) specifically determined for the TVS-8500 [26], and Lf and Lb are the
average bandpass radiance values associated with the active fire pixel, f, and the ambient background
temperature, b, respectively. The MIR radiance method was employed since it is less dependent
on spatial scale compared to other empirical Fire Radiative Power (FRP) retrieval techniques [27]
and has previously been applied to TVS-8500 imagery to estimate FRP and Fire Radiative Energy
(FRE) during the development of laboratory relationships between radiant heat release and total fuel
consumption [26]. It is extremely important to note that according to Equation (2), FRFD (W m−2)
represents the radiant heat release rate of the fire per unit area of the ground resolution cell. Estimates
of FRFD will only approximate the true radiant reaction intensity if, and only if, the IFOV of a pixel is
completely filled by the fire.
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Pixel level measurements of FRFD in the ground-based MIR images were integrated over time to
yield fire radiative energy density (FRED) in units of MJ m−2 using Equation (3):

FRED =
n

∑
i=1

FRFDi ∆ti (3)

where i is an image index, n is the number of images in the sequence, and ∆t is the sampling interval
between consecutive images.

Airborne. Long-wave infrared (LWIR) images were also collected on 3 September 2003 between the
hours of 13:00 and 17:30 MDT with an airborne system (FireMapperTM Thermal Imaging Radiometer)
operated by the U.S. Forest Service Pacific Southwest (PSW) Research Station and mounted on a Piper
Navajo (N70Z) aircraft flying at ~3500 m above ground level (AGL). FireMapperTM is a dual-band
imaging system acquiring at IR bandpasses of 8.1–9.0 µm and 11.4–12.4 µm (Table 1). Images in the
8.1–9.0 µm band were saturated and therefore unused; the LWIR images in the 11.4–12.4 µm band
were orthorectified and coregistered. ERDAS LPS [28] was used to process the digital IR data to
georeferenced orthoimages. The orthoimages were merged together using ERDAS Imagine Mosaic
Pro [29].

Calibrated 11.9 µm pixel brightness temperatures in the FireMapperTM imagery were converted
to power equivalents of FRFD in units of kW m−2 using Stefan–Boltzmann’s law:

FRFD = σ
(

T4
f − T4

b

)
(4)

where Tf is the brightness temperature, and Tb is the background brightness temperature in K. To
estimate FRED, the trapezoidal rule for numerical integration [30] was used as it is better suited than
Equation (3) for time-series data collected at irregular intervals:

FRED =
n

∑
i

0.5(FRFDi + FRFDi−1)(ti − ti−1) (5)

where FRFDi is pixel-level FRFD from each time series image i, and t is time in seconds (s).

Table 1. Instrument specifications for the ground-based Cincinnati TVS-8500 and airborne
FireMapperTM used to collect thermal images of the Cooney Ridge Fire Experiment.

Instrument Cincinnati TVS-8500 FireMapperTM

Manufacturer CMC Electronics Space Instruments

Spectral Bands 3.4–4.1 µm
4.5–5.1 µm

8.1–9.0 µm
11.4–12.4 µm

Image Dimensions 236 × 256 pixels 327 × 205 pixels

Raw Image Resolution 0.8 m 4.5 m

Uncompressed Image Size 121 KB 134 KB

Image Encoding 14 bit 16 bit

Instantaneous Field of View 1 milliradian 1.85 milliradians

Field of View 14.6◦ 35◦ (crosstrack)

Sensor Position 785 m horizontal distance
176 m vertical distance 3500 meters AGL

2.5. Hyperspectral Imagery

Radiometric corrections. Airborne hyperspectral image swaths of most of the Cooney Ridge
wildfire were collected on 14 September 2003 with a Probe-1 whiskbroom sensor at a nominal ground
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resolution of 4.5 m. The 128 channels spanning 432–2512 nm with bandwidths of 11–19 nm were
radiometrically corrected to apparent reflectance by the vendor (Earth Search Sciences Inc., Kalispell,
MT, USA) using FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) software
(FLAASH Spectral Sciences, Inc., Burlington, MA, USA). The reflectance data were further refined
using a Radiative Transfer Ground Calibration (RTGC) [31], followed by an Empirical Line Calibration
(ELC) using field spectral reflectance data collected nearby on a bright gravel roadbed, to standardize
atmospheric and illumination effects across all the image bands [32]. Bands between 1340–1480 nm
and 1810–1970 nm were eliminated because of atmospheric water absorption, and another band at
2512 nm was removed for noise, leaving 119 bands for Multiple Endmember Spectral Mixture Analysis
(MESMA).

Geometric corrections. The airborne image vendor supplied input geometry files for georeferencing
hyperspectral image swaths, but the images remained distorted, so prior to extracting any image pixel
values at fire effects subplot locations, the images were warped to a 1 m orthorectified base image
collected by the National Agriculture Imagery Program (NAIP) on 20 July2009 (Figure 1). Delauney
triangulation was employed to get an accurate match to the base image, as evidenced by how well
roads and other local features matched the base image. Delauney triangulation requires a high density
of ground control points (GCPs); there were 130 GCPs in the case of the flightline that imaged the
experimental burn area. The 1 m resolution warped image outputs were subsequently resampled to
5 m resolution using cubic convolution radiometric resampling.

Multiple Endmember Spectral Mixture Analysis (MESMA). The reflectance signal recorded in an
image is a function of the distinct reflectance spectra (Figure 3) of the different component materials
comprising the scene (Figure 4). Assuming that this mixing is a linear function of their relative
proportions, the linear mixture model is defined as:

Ri =
n

∑
j=1

(
Ri,j f j

)
+ ei (6)

where Ri is the spectral reflectance of the ith spectral band of a pixel, Ri,j is the spectral reflectance
of endmember j in band i, fj is the fractional cover of endmember j, and ei is the error in band i.
MESMA uses this same linear model as other SMA methods, but allows the endmembers to vary
between pixels rather than adhere to the stricter SMA constraint that each pixel contain the same
endmembers [33]. MESMA also allows for variation within the same material, such as different
tree species representing green vegetation. MESMA code is part of VIPER (Visualization and Image
Processing for Environmental Research) Tools (VIPER Tools, Santa Barbara, CA, USA), which has
an iterative endmember selection process built in, such that the most representative endmembers
are selected [34,35]. VIPER Tools are implemented as an add-on to ENVI image processing software
(Harris Geospatial Solutions, Broomfield, CO, USA).

Reference endmember reflectance spectra (Figure 3) of all surface cover materials (Figure 4) were
collected on site with a field spectroradiometer (ASD Pro-FR) at the time of fire effects characterization
(21 September 2003). The spectroradiometer collects spectra in 2050 channels with 1 nm bandwidths
spanning 350–2500 nm. Reference endmember bundles of green needle, dead needle, charred wood,
ash, and mineral soil spectra (Figures 3 and 4) were used to unmix all of the hyperspectral image swaths
collected over the Cooney Ridge wildfire [5], and the experimental burnout area was subsequently
subset from the MESMA image outputs for this study.
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Figure 3. Left: Researcher using the field spectroradiometer. Right: Endmember reflectance
spectra of green Douglas fir needles, dead Douglas fir needles (representing scorched or otherwise
non-photosynthetic vegetation, NPV), ash, mineral soil, and char collected near the Cooney Ridge Fire
Experiment site. Displayed are the mean and standard deviation based on 20 spectra per endmember.
The 1350–1400, 1795–1945, and 2475–2500 nm wavelengths are omitted because of high noise levels in
these atmospheric absorption windows.

Figure 4. Surface materials characterized with a field spectroradiometer near the site of the Cooney
Ridge Fire Experiment to record spectral endmember reflectance of (a) green Douglas fir needles,
(b) dead Douglas fir needles (representing scorched or otherwise non-photosynthetic vegetation, NPV),
(c) charred wood, (d) ash, and (e) mineral soil.

2.6. Combining Active and Post-Fire Measurements to Predict Fire Effects

The airborne LWIR derived FRED images had ~4.5 m resolution pixels that were neither exactly
square nor aligned to the hyperspectral image-derived MESMA images collected independently.
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The FRED images were therefore nearest-neighbor resampled to the same 5 m × 5 m resolution and
pixel alignment as the MESMA images and with a common extent of 63 rows × 93 columns (5859
pixels) that fully imaged the burnout area, which equates to a 315 m × 465 m analysis area (14.65 ha;
yellow rectangle in Figure 1). The FRED and MESMA images were considered as candidate predictor
variables in multiple linear regression models for predicting percent cover of litter and mineral soil
measured at the 195 subplots. A best subsets procedure was used to select the best predictor variable
combination based on the lowest Akaike Information Criterion (AIC) [36], with candidate models
ranging from univariate to including all predictors. Spatial simultaneous autoregressive models [37,38]
were used to make use of the spatial autocorrelation between the nested field subplots, to increase
predictive power over an aspatial multiple linear regression model [39]. Residual autocorrelation was
assessed using Moran’s I and Geary’s C statistics. Analysis of variance (ANOVA) was used to compare
the two models and assess whether the spatial model significantly increased variance explained on the
basis of the log likelihood. All statistical analyses were done using R software [40].

3. Results

3.1. Tree Mortality

The experimental burnout operation on 3 September 2003 began at approximately 13:00 MDT,
but the fire did not enter the fuel plot until approximately 15:45. Fuel moistures were much lower
than would be permitted for a typical prescribed fire (1 h, 16%; 10 h, 15%; 100 h, 13%; 1000 h, 48%).
Torching behavior was observed, particularly of subalpine firs (Figure 5), and scorch heights exceeded
the 26 m tall trees. The fire killed all the mature subalpine fir and Douglas fir trees in the fuel plot,
while a single western larch was damaged but survived (Table 2). All saplings of subalpine fir, Douglas
fir, and Engelmann spruce (Picea engelmannii) were killed by the fire, and seedlings of the same three
species were reduced by approximately 84%.

Figure 5. Photograph of torching fire behavior at 15:46 MDT (according to the digital camera timestamp)
in the vicinity of the fuel plot, looking south from the road.
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Table 2. Pre-fire and post-fire measurements of the trees tallied in the fuel plot. Pre-fire data were collected on 3 September 2003, and post-fire data on 11
September 2003.

Species Sample
Event

Live Trees
(ha−1)

Live Basal Area
(m2 ha−1)

Avg. Live Crown
Base Height (m)

Avg. Height
(m)

QMD
(cm)

Saplings
(ha−1)

Seedlings
(ha−1)

Total Live
(ha−1)

Snags
(ha−1)

Subalpine fir
Pre 98.8 2.8 1.6 16.5 18.9 197.7 3459.4 3755.9 0
Post 0 0 0 0 0 0 741.3 741.3 98.8

Difference −98.8 −2.8 −1.6 −16.5 −18.9 −197.7 −2718.1 −3014.6 98.8

Western larch
Pre 24.7 1.6 4.3 25.9 29 0 0 24.7 0
Post 24.7 1.6 25.9 29 0 0 24.7 0

Difference 0 0 −4.3 0 0 0 0 0 0

Engelmann
spruce

Pre 0 0 0 0 0 49.4 2223.9 2273.3 0
Post 0 0 0 0 0 0 0 0 0

Difference 0 0 0 0 0 −49.4 −2223.9 −2273.3 0

Douglas fir
Pre 49.4 2.6 1.8 17.5 26 24.7 3459.4 3533.5 0
Post 0 0 0 0 0 0 741.3 741.3 49.4

Difference −49.4 −2.6 −1.8 −17.5 −26 −24.7 −2718.1 −2792.2 49.4

Total Trees
Pre 173 7 2 18.1 22.7 271.8 9142.7 9587.5 0
Post 24.7 1.6 4.3 25.9 29 0 1482.6 1507.3 148.3

Difference −148.3 −5.4 2.3 7.8 6.3 −271.8 −7660.1 −8080.2 148.3
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3.2. Fuel Loading and Consumption

The fire consumed 82% of the dead and downed woody fuel and 96% of the total forest floor
fuel load [41]. Table 3 shows the consumption of the separate forest floor components in the fuel
plot, which burned at a low-moderate severity relative to the mixed fire severities observed across
the site (Figure 6) and across the Cooney Ridge Fire as a whole [42]. A fuel load consumption of
5.4 kg m−2 from the field surveys is expected to produce a FRED of 11.9 MJ m−2 [26]. If we factor in
the previously reported fuel moistures, converted to gravimetric water contents and weighted by the
percent consumption estimates reported in Table 3 for the different fuel components, then the expected
FRED is reduced to 10.9 MJ m−2 [23].

Table 3. Forest floor fuel loadings in 2003 at the single fuel plot and in 2013 at six fire effects plots,
enabling the calculation of the mean (SD).

Fuel Fraction
2003 (Fuel Plot) 2013 (Fuel Plot) 2013 (Fire Effects Plots)

Pre-Fire
(kg m−2)

Post-Fire
(kg m−2)

Difference
(kg m−2)

Consumption
(%) (kg m−2) (kg m−2)

1000 h 1.513 0.000 −1.513 100.00 NA 2.30 1

100 h 0.170 0.170 0.000 0.00 0.00 1.38 (1.81)
10 h 0.518 0.208 −0.309 59.74 0.02 0.68 (0.75)
1 h 0.016 0.013 −0.002 14.29 0.05 0.22 (0.24)

Litter 3.699 0.135 −3.564 96.36 0.53 0.47 (0.18)
Duff 0.000 0.000 0.000 0.00 1.27 1.20 (0.38)
Total 5.916 0.527 −5.389 91.10 1.87 6.25

1 In 2013, 1000 h fuels were only estimated at the center fire effects plot (Figure 3), 60 m upslope from the fuel plot.

Figure 6. Photographs collected on 21 September 2003, representative of (a) high, (b) moderate, and
(c) low fire severity conditions at three of 13 fire effects plots following the experimental fire.

3.3. In Situ Heat Flux and Weather

Although the datalogger in the FBP located on the west side of the fuel plot failed to record, in situ
measurements of total and radiant heat flux were successfully recorded at 1 Hz by the FBP on the east
side of the fuel plot (Figure 1). The initial flaming combustion phase lasted 10 s, and, although the FBP
radiometers are side-looking and captured the heating of opposing tree stems, the field of view (FOV)
likely also contained surface fuels as well as the forest floor as evidenced by a slowly decaying heat
release rate that lasted 2 min 38 s, indicative of a smoldering combustion phase with some residual
flames. The total incident heat flux peaked at 11.7 kW m−2 just 3 s after entering the sensor’s field
of view (Figure 7). The total heat flux during the smoldering phase dropped from ~4.4 kW m−2 to
~3.0 kW m−2, while FRFD dropped from ~3.9 kW m−2 to ~2.2 kW m−2 (Figure 7). Thus, an estimated
radiant fraction of ~0.8 was nearly constant during the record of observation. This is a much higher
radiant fraction than typically reported [23,26,43,44]. Estimated FRED from the eastern FBP reached
0.57 MJ m−2 before the radiometer stopped responding.
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Figure 7. Total and radiant heat flux measured at the FBP as the flame front passed the in situ instrument
location (Figure 1). The difference between total and radiant is indicative of convective heat flux. Time
on the x-axis was not calibrated and thus is only relative.

Although the western AES was immolated in the fire (Figure 8a,b), weather data and heat flux
were successfully recorded at the AES deployed east of the fuel plot (Figure 8c). The increase in wind
speed at ~15:30 was the first variable to presage the arrival of the fire front (Figure 9). At ~15:50,
the wind direction shifted from the NW to the WSW (Figure 9), and the air temperature and relative
humidity reached their extremes (Figure 10). A peak FRFD of almost 6 kW m−2 occurred at ~15:55,
about 5 min after the fire first entered the FOV, followed by a cooling phase that lasted longer than 2 h,
during which the datalogger stopped recording. Integrating the FRFD profile over the 2.8 h record
yielded a FRED estimate of 9.3 MJ m−2 (Figure 11).

Figure 8. (a) Pre-fire photograph of the Fire Behavior Package (FBP) and Autonomous Environmental
Sentry (AES) collocated just west of the fuel plot (looking east); (b) the AES west of the fuel plot
(looking south), immolating at 16:01 MDT (according to the digital camera time stamp); (c) post-fire
photograph of the FBP and AES collocated just east of the fuel plot (looking west).
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Figure 9. Wind speed and wind direction recorded by the AES located east of the fuel plot over the
course of the fire.

Figure 10. Ambient air temperature and relative humidity recorded by the AES located east of the fuel
plot over the course of the fire.

Figure 11. FRFD and FRED recorded by the AES located east of the fuel plot over the course of the fire.
FRFD: Fire Radiative Flux Density; FRED: Fire Radiative Energy Density.
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3.4. Thermal Infrared Imaging

Ground-based. The ground-based, low-oblique viewing MIR camera provided a third source
of FRFD observations for a portion of the fuel plot (54%) not obscured by the two tree crowns
in the foreground. Image collection commenced when the fire entered the fuel plot and began
triggering active fire pixels (Figure 12a). FRFD calculated by Equation (2) used an ambient background
temperature of 300 K. The minimum radiant heat flux measured for any individual pixel ranged
from 0.1 to 0.9 kW m−2, corresponding to the dynamic lower detection threshold, and a maximum
per-pixel value of 44.8 kW m−2 was recorded at 15:58. At no time did any thermal pixel in the fuel
plot saturate, and the saturation rate outside of the fuel plot was less than 0.01%. The area-weighted
average radiant heat flux emitted by the fire within the fuel plot reached a maximum of 6.2 kW m−2 at
15:58. After the peak heat flux, the fire continued to spread for another ~20 min when, at 16:18, there
was a small flare-up, and all pixels in the fuel plot visible from the low-oblique vantage point were
ignited. Although data collection continued for another hour, not all fire activity in the fuel plot fully
extinguished (Figure 12b). At 17:18, most pixels in the fuel plot visible with the TVS-8500 were warm
enough to breach the dynamic detection threshold, however the majority of these active fire pixels
were likely composed of cooling materials that emitted very little radiant heat. Nevertheless, 10% of
the active fire pixels detected by the TVS-8500 at the end of the observations had FRFD values greater
than 2.0 kW m−2, a reasonable threshold at this spatial resolution to assume that sub-pixel combustion
had not completely ceased.

Figure 12. Summary of the radiant heat flux measurements collected with the TVS-8500 middle
infrared camera (ground-based, low-oblique view) for the fuel plot only. The temporal profiles of the
thermal distribution within the fuel plot and the size of the active fire area expressed in terms of pixel
counts are shown in (a), along with the times of the coincident FireMapperTM overpasses. Radiant
heat flux profiles of two pixels (b) illustrate separate locations inside the fuel plot where the entire
combustion history from ignition to extinction was either completely or incompletely captured during
the observation. The right-skewed distribution of the radiant heat per unit area (c) illustrates the spatial
heterogeneity of fire behaviour within the fuel plot. FRFD: Fire Radiative Flux Density; FRED: Fire
Radiative Energy Density; PSW: Pacific Southwest FireMapper system.



Fire 2018, 1, 10 16 of 32

Integrating the temporal profiles of FRFD for all 303 active fire pixels yielded a map of FRED for
54% of the fuel plot visible from the low-oblique vantage point. The distribution of the radiant heat
per area (Figure 12c) is heavily right-skewed, ranging from 0.1 to 59.4 MJ m−2, with half of the pixels
below 7.2 MJ m−2, indicating the spatial heterogeneity of the fire’s reaction intensity and/or residence
time. Though unaffected by saturation, the distribution in Figure 12c is slightly misshaped because of
the few incomplete observations of still burning materials (Figure 12b). Overall, the area-averaged
FRED for the portion of the fuel plot visible in the low-oblique imagery was 11.2 MJ m−2.

Airborne. The airborne system provided a time series of fire observations across the entire
study area at fairly consistent intervals and over a longer period than the other sensors (Figure 13).
An ambient background temperature of 300 K was used to estimate FRFD by Equation (4), on the basis
of two considerations. First, brightness temperatures in an unburned, 13 × 9 pixel area situated in the
forested, southeast corner of the scene ranged from 288 K to 302 K in the 42-image time series, with a
mean of 297.6 K and a median of 296.0 K. Second, 300 K equates to 26.85 ◦C, closely matching the air
temperature recorded by the AES (Figure 10).

Figure 13. FRFD time series collected with the airborne imager at the scale of the (a) active fire pixels
(n = 68, 100%) within 23 m of the fuel plot center and also encompassing the FBP and AES active fire
instruments (see Figure 1), and (b) active fire pixels (n = 2216, 37.8%) from within the entire 93 × 63
pixel study area (n = 5859). The temporal measurement periods for the FBP, AES, and TVS-8500 sensors
are plotted in (a). FRFD: Fire Radiative Flux Density; FBP: Fire Behavior Package; AES: Autonomous
Environmental Sentry; TVS-8500: ground-based camera.

The airborne imager captured 42 frames that completely covered the experimental fire area from
13:27 to 17:12. FRFD ranged from 0.5 to 29.4 MJ m−2 over the period of airborne image collections,
peaking in the fuel plot at 21.1 MJ m−2 at ~15:54 (Figure 13).

Maps of FRFD from eight airborne images acquired when FRFD was peaking are shown in
Figure 14. Ignition lines for backing fires were lit upslope of the fuel plot at about 13:15 (Figure 1).
At the 13:27 start of the time series (Figure 13), the fire progression (with torching behavior) was
most active >100 m upslope (SW and SE) of the fuel plot (Figure 14). Meanwhile, a lower intensity
surface fire persisted immediately upslope (south) of the fuel plot and about ~50 m south of the
active fire instruments (Figure 1) from ~14:40 until ~15:45. Because the fire did not back farther
downslope into the fuel plot, perhaps because of pre-fire trampling of fine fuels in this vicinity during
fuel sampling and equipment set up, fuels were hand-ignited for a head fire downslope (north) of
the fuel plot starting at 15:45 (Figure 1). This presumably caused the local wind shift recorded at this
time (Figure 9). Flaming combustion continued until ~17:15, and smoldering combustion continued
beyond the measurement periods of the various sensors (Figures 7 and 11–13). These observations
were corroborated by personnel on the fire line.
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Figure 15 illustrates estimated FRED integrated at each pixel over the FRFD time series
(n = 42) by Equation (5). FRED ranged from 0.5 to 38.4 MJ m−2 in the active fire pixels within
the entire study area (Figure 13b), and mean FRED was 11.8 (s.d. 6.8) MJ m−2 (Figure 15). Considering
only the 68 FRED pixels within 23 m of the fuel plot center (100% active fire pixels), thus encompassing
not just the fuel plot but also the FBP and AES active fire instruments (Figure 13a), FRED ranged from
0.9 to 27.2 MJ m−2, and mean FRED was 10.1 (s.d. 5.5) MJ m−2.

Figure 14. Eight images with relatively high radiant flux selected from the airborne image FRFD time
series (Figure 13). The fuel plot is overlaid for spatial reference. FRFD: Fire Radiative Flux Density.

Figure 15. FRED image integrated from FRFD time series collected by the airborne imager (Figures 13b
and 14). The fire effects subplots, locations of FBP and AES instruments, and fuel plot are overlaid for
spatial reference. FRED: Fire Radiative Energy Density.
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3.5. Multi-Scale Comparisons of Heat Flux Measurements

Because of our inadequate ability to identify what portion of the fuel plot was contained in
the field of view of the FBP and AES radiometers, it is inadvisable to compare measurements from
these two sensors with each other or with heat flux estimates derived from the ground-based or
airborne infrared imagery. Instead, comparisons are limited here to the two sequences of georegistered
images collected with the TVS-8500 and the FireMapper. Although georegistration errors prohibit
per-pixel comparisons, the uncertainties in the pixel locations were mitigated by spatially averaging
the estimates of FRFD and FRED over the entire fuel plot. Since 54% of the fuel plot was obscured in
the low-oblique imagery by two tree crowns in the foreground, it is assumed that measurements in the
visible portion of the fuel plot are representative of the hidden area behind the tree crowns.

On an instantaneous basis, estimates of the average FRFD over the fuel plot derived from the
low-oblique MIR images and the nadir-looking LWIR images were strongly correlated (R2 = 0.75),
with the former always being higher (Figure 16). Despite the correlation, the response of the TVS-8500
and the FireMapper to varying thermal distributions and active fire sizes in the fuel plot was not
constant. Sensor-to-sensor ratios (TVS-8500: FireMapper) of heat flux estimates ranged from 1.06 to
3.32, with estimates tending to agree more closely at lower values of FRFD. Consequently, differences
in the spatially averaged FRED over the fuel consumption plot (11.2 MJ m−2 from the TVS-8500 and
7.12 MJ m−2 from the FireMapper) are primarily attributed to observations collected during periods of
increased fire behavior.

Figure 16. Spatially and temporally coincident comparisons of Fire Radiative Flux Density (FRFD)
estimated from the ground-based TVS-8500 (middle infrared, low-oblique view) and the airborne
FireMapperTM (long-wave infrared, nadir view). Estimates of FRFD are the average over all active fire
pixels detected in the fuel plot only.

3.6. Fire Effects

The immediate post-fire hyperspectral image of the experimental fire area and three derived
MESMA images of estimated cover fractions are shown in Figure 17. These three MESMA images
are not absolute measures of in situ ground cover, but discrete estimations of subpixel ground cover
fractions that are distinct spectrally and spatially (Figure 17) across many pixels, as evidenced by low
Pearson correlations: −0.52 (soil vs. green), −0.53 (soil vs. NPV), and r = 0.15 (green vs. NPV). Ash
and char endmembers also were initially considered, but preliminary inspection of these endmember
images revealed spectral confusion with soil and shade, respectively, which is also apparent visually
(Figures 3 and 4). Therefore, ash and char cover fractions were dropped from further consideration in
the predictive models.

The mean cover percentages of the ground cover component materials, as estimated ocularly
in the field at 195 subplots, were 45.3% NPV, 49.8% mineral soil, and 4.9% ash (Table 4). No green
ground cover vegetation was encountered below breast height while characterizing the 13 fire effects
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plots immediately post-fire (Figure 15). At the center fire effects plot (Figure 6a), all trees were killed,
and the tree crowns were characterized as 94% black (charred) and 6% brown (scorched). However,
tree crowns in some other fire effects plots were either mostly scorched (Figure 6b) or mostly green
(Figure 6c); thus, the fire severity varied between fire effects plots. Mean canopy closure measured
with a spherical densiometer at the time of field plot characterization immediately post-fire was 38.6%
(Table 4), with no differentiation between green and NPV components.

Figure 17. Immediate post-fire airborne hyperspectral imagery collected on 14 September 2003. Upper
left: color infrared composite image of Probe-1 hyperspectral image bands 9 (554 nm, displayed in
blue), 16 (661 nm, displayed in green), and 27 (827 nm, displayed in red), such that green vegetation
appears bright red; Upper right: Multiple Endmember Spectral Mixture Analysis (MESMA) image of
green vegetation; Lower left: MESMA image of scorched or otherwise non-photosynthetic vegetation
(NPV); Lower right: MESMA image of mineral soil. Higher fractional coverage is indicated by the
brighter values in all three MESMA images. The yellow rectangle (Figure 1) delimits the spatial extent
of the airborne thermal imagery analyzed (Figures 14 and 15).

Table 4. Mean (SD) overstory canopy closure, plant species richness, ground cover fractions, and
litter/duff depths.

Post-Fire Measurement 2003 (n = 13 plots) 2004 (n = 6 plots) 2013 (n = 6 plots)

overstory canopy closure (%) 38.6 (14.1) 44.6 (28.0) 10.9 (9.6)
plant species richness (m−2) 0.0 (0.0) 5.5 (4.5) 12.5 (2.4)
plant cover (%) 1 0.0 (0.0) 46.7 (13.8) 82.5 (25.6)
green vegetation (%) 2 0.0 (0.0) 35.2 (17.3) 65.0 (14.0)
organic (%) 3 45.3 (21.7) 35.2 (12.4) 31.5 (11.4)
inorganic (%) 4 49.8 (21.0) 26.7 (20.9) 3.5 (5.8)
ash (%) 4.9 (3.8) 3.6 (4.3) 0.0 (0.0)
char (%) 5 77.8 (21.0) 35.1 (23.7) 9.9 (12.5)
litter (mm) 9.1 (4.1) 4.0 (3.6) 10.7 (4.0)
duff (mm) 20.3 (7.5) 17.5 (10.6) 11.3 (3.6)

1 Green plant cover <1.37 m breast height summed for all species, allowing for vertical overlap; 2 Green plant
cover <1.37 m breast height, collapsed on to a plane (no vertical overlap); 3 Includes non-photosynthetic litter,
downed woody debris, and stumps; 4 Includes soil and rock; 5 The green, organic, inorganic, and ash cover fractions
are constrained to sum to unity, whereas char is not and represents the combined percentage of the organic and
inorganic cover fractions that is charred.
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3.7. Active and Post-Fire Imagery Combined to Predict Fire Effects

The lowest AIC among competing models resulted in three predictor variables, which produced
the best subsets for multiple linear regression models predicting percent cover of litter and mineral
soil. The selected variables for predicting both litter and mineral soil cover were airborne FRED first,
followed by MESMA soil and then MESMA green (Table 5). The measures of model fit (RMSE) and
variance explained (R2) were slightly better for predicting mineral soil than litter cover (Table 5). Both
models also had significantly autocorrelated residuals based on Moran’s I and Geary’s C statistics
(Table 5), therefore invalidating the assumption of independent sample data. Fortunately, our spatially
nested plot layout was actually designed to capture spatial dependence, which was exploited to
increase predictive power using spatial simultaneous autoregressive models. Including the spatial
signal in the models reduced the RMSE, increased the R2, lowered the AIC value, and significantly
increased the log likelihood compared to the aspatial linear regression models (Table 5). Moreover, the
spatial autoregressive models removed autocorrelation from the residuals, on the basis of Moran’s I
and Geary’s C statistics (Table 5). The spatial autoregressive models were then applied to map percent
cover of litter and mineral soil. The fitted values illustrated in Figure 18 include the combined influence
of both the linear trend (Table 5) and the spatial signal components, which comprise approximately
two-thirds and one-third of the fit, respectively. Because NPV and soil were the two predominant cover
fractions immediately post-fire, the mapped predictions are significantly, yet negatively, correlated
(Pearson r = −0.98, p-value = 2.2 × 10−16).

Figure 18. Percent cover of litter (top) and mineral soil (bottom) as predicted by the spatial
autoregressive models.
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Table 5. Descriptions of the models used to predict percent cover of A) litter and B) mineral soil. In each case, results include 1) linear regression and 2) spatial
autoregression trend component; 3) results from an ANOVA comparing the aspatial and spatial models.

A) Litter Cover

1) Linear Regression Estimate SE t value Pr (>|t|)

(Intercept) 110.29 17.75 6.21 3.17 × 10−9

Airborne FRED −1.21 0.31 −3.95 1.08 × 10−4

MESMA Soil −274.92 80.21 −3.43 7.46 × 10−4

MESMA Green 96.48 48.95 1.97 0.05
Model Statistics: RMSE = 28. 92; R2 = 0.30; p-value = 6.01 × 10−15

Residual Autocorrelation: Moran’s I p-value = 0.0007; Geary’s C p-value = 0.0011

2) Spatial Autoregression Estimate SE z value Pr (>|z|)

(Intercept) 77.42 18.25 4.24 2.21 × 10−5

Airborne FRED −0.81 0.29 −2.77 5.59 × 10−3

MESMA Soil −210.62 76.50 −2.75 5.90 × 10−3

MESMA Green 47.56 46.76 1.02 0.31
Model Statistics: RMSE = 27.35; R2 = 0.38; p-value = 6.62 × 10−5

Residual Autocorrelation: Moran’s I p-value = 0.7723; Geary’s C p-value = 0.7757

3) ANOVA Comparison df AIC logLik L. Ratio p-value

Linear Regression 5 1875.6 −932.78
Spatial Autoregression 6 1861.7 −924.82 15.916 6.62 × 10−5

B) Mineral Soil Cover

1) Linear Regression Estimate SE t value Pr (>|t|)

(Intercept) −21.91 16.61 −1.32 0.19
Airborne FRED 1.17 0.29 4.09 6.49 × 10−5

MESMA Soil 306.01 75.06 4.08 6.69 × 10−5

MESMA Green −80.91 45.81 −1.77 0.08
Model Statistics: RMSE = 27.07; R2 = 0.33; p-value = 2.2 × 10−16

Residual Autocorrelation: Moran’s I p-value = 0.0059; Geary’s C p-value = 0.0114

2) Spatial Autoregression Estimate SE z value Pr (>|z|)

(Intercept) −24.99 15.86 −1.58 0.12
Airborne FRED 0.85 0.28 3.04 2.37 × 10−3

MESMA Soil 248.15 73.41 3.38 7.24 × 10−4

MESMA Green −44.93 44.64 −1.01 0.31
Model Statistics: RMSE = 26.08; R2 = 0.38; p-value = 1.02 × 10−3

Residual Autocorrelation: Moran’s I p-value = 0.7422; Geary’s C p-value = 0.7728

3) ANOVA Comparison df AIC logLik L. Ratio p-value

Linear Regression 5 1849.7 −919.86
Spatial Autoregression 6 1841.1 −914.56 10.595 1.13 × 10−3
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Ash is a first-order fire effect and the direct result of combustion [45,46]. The Spearman rank
correlation of post-fire ash to airborne FRED was significant (ρ = 0.34, p-value = 1.07 × 10−6), but not
as strong as the correlation of mineral soil to airborne FRED (ρ = 0.50, p-value = 6.66 × 10−14), probably
because there was 10 times as much mineral soil exposed (49.8%) as ash (4.9%) on site immediately
post-fire (Table 4).

3.8. Site Recovery

When characterized immediately post-fire, white ash has been shown to correlate well with fuel
consumption across a broad range of fuel types and loads [46]. Ash gets redistributed quickly by
wind and water and integrated into the soil; however, and we believe this happened by the time of
the post-fire hyperspectral image and field data collections, 11 and 18 days after the fire experiment,
respectively. Nine months later, some ash (3.6%) was still visible through the new green vegetation
regrowth (35.2%), which reduced the visible fractions of the non-photosynthetic organic material by
10.1%, inorganic material by 23.1%, and black char by 42.7% (Table 4). These trends continued to 2013,
when green vegetation comprised 65% of ground cover, at the expense of the other ground materials
(Table 4).

Many of the subalpine fir and Douglas fir trees that were either scorched or still green but girdled
by the fire did not drop their needles until after the hyperspectral image was acquired, as was observed
upon revisiting the site in July 2004, nine months after the burn. Many of these snags can be seen
standing six years later in the 20 July 2009 high-resolution NAIP image (Figure 1). By the time of
the ten-year post fire revisit (Figure 19), the majority of snags had fallen, reducing canopy closure by
~33% (Table 4) and increasing forest floor fuel loads, especially of the large 1000 h and 100 h fractions
(Table 3).

Figure 19. Left: View of the experimental fire site on 14 June 2005 from the vantage point of the
ground-based TVS-8500 camera that imaged the site. Right: View of the site on 13 August 2013, looking
upslope (south) from the fuel plot.

The fire experiment reduced ground cover plant species richness to zero, with no green vegetation
observed immediately post-fire at any of the 13 original plots (Table 4). Species richness across the
experimental fire site increased from 5.5 species m−2 in 2004 (pre-fire) to 12.5 species m−2 in 2013
(Table 4). The fuel plot had the highest diversity of any plot, perhaps because it was at the base of the
hillslope; species richness there increased from 9.4 species m−2 in 2004 to 15.6 species m−2 in 2013.
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The standard deviation in species richness between plots decreased from 4.5 species m−2 one year post
fire to 2.4 species m−2 ten years post fire (Table 4).

In terms of tree species diversity, only Douglas fir seedlings were observed within the original
fuel plot in 2004, but five species of conifer seedlings [Engelmann spruce, subalpine fir, western larch,
lodgepole pine (Pinus contorta), and Douglas-fir] were observed in 2013. High light availability due to
high tree mortality followed by the natural felling of most snags by 2013 promoted a major regeneration
of willow (Salix spp.) and a minor regeneration of trembling aspen (Populus tremuloides) (Figure 19).
Tree seedling density increased six-fold, from 0.16 seedling m−2 in 2004 to 1.0 seedling m−2 in 2013.
There is no evidence of salvage logging or any other disturbance since the experiment, as most recently
confirmed in a 2016 site revisit to complete a photopoint time series of the fuel plot (Figure 20).

Figure 20. View of the fuel plot from photopoints facing North, East, South, and West pre-fire (top),
immediately post-fire (middle), and 13 years post-fire (bottom).

4. Discussion

4.1. Fire Radiant Heat Flux

The goal of synergistically assimilating multi-scale measurements of radiant heat flux to
quantitatively characterize wildland fire behavior and effects is hampered by several theoretical
and technical issues. Over the course of the Cooney Ridge Fire Experiment and the Rapid Response
project as a whole, we organized these issues into three themes broadly covering spectral, temporal,
and spatial considerations (Table 6).

One impediment to comparing sensor outputs is that each sensor operates in a different spectral
band. If the broadband radiometers in the FBP and AES have a uniform spectral response and have
been calibrated, then the conversion between the raw sensor signal and the spectrally integrated
radiant heat flux over all wavelengths is a relatively straightforward procedure. In contrast, many
narrow-band radiometers and most thermal imaging systems operate in specific atmospheric windows
either between 3–5 µm (MIR) or 8–14 µm (LWIR) [47]. Although from a practical standpoint these
atmospheric windows permit much of the fire emitted radiance to reach the sensor unattenuated,
the challenges of estimating the spectrally integrated radiant heat flux from a spectral brightness
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temperature measurement has inspired the development of several novel approaches, namely, the
emissivity-area product [44,48], a semi-empirical approach based on simulated sub-pixel thermal
distributions [27], and the MIR radiance method [25]. Nevertheless, none of these approaches are
completely resilient to the transient subpixel thermal distributions that fluctuate over time. For
example, because of differences in their spectral bandpasses, the TVS-8500 and the FireMapper
will respond differently depending on the combustion phase (i.e., flaming versus smoldering) and
size of the active fire area observed. Consequently, the sensor-to-sensor comparisons of radiant
heat flux (Figure 16) were influenced by the temporal evolution of the active fire area and thermal
distributions—and thus the combustion history—within the fuel plot. Moreover, the atmospheric
windows within which the TVS-8500 and FireMapper bandpasses reside are not perfectly transparent.
As of yet, the spectrally dependent transmittance between the ground resolution cells and the
ground-based and airborne imaging systems has not been taken into account. The path-integrated
transmissivity has two components: a static component associated with the smoke-free atmosphere
and a dynamic component associated with spatiotemporal variations in scattering and absorption by
the smoke plume. Proper comparisons of radiant heat flux estimates will require that Equations (2)
and (4) incorporate the spectrally, spatially, and temporally varying transmittance values as well as the
line-of-sight distances between the sensor and fuel plot. Eliminating the spectral dependence on the
measurement can be accomplished by using only instruments with the same bandpass, though this
is likely impossible for a multi-scale campaign because of the technical requirements for each sensor
package and platform.

Compared to fixed wing overflights, the use of a ground-based thermal imaging system offers
improved temporal resolution (Figure 12a), which enables the near-continuous observation of high
frequency fluctuations in fire behaviour. Using a time-discrete summation (Equation (3)) or the
trapezoidal rule of numerical integration (Equation (5)) to estimate FRED assumes a constant FRFD—or
a constant trajectory of FRFD—between consecutive observations, which becomes less valid for
infrequent observations of dynamic fire behaviour. This is evidenced by fluctuations in the thermal
distribution measured by the low-oblique camera at 30 s intervals between the airborne overpasses at
~5 min intervals (Figure 12a). More importantly, confident estimates of FRED require that the entire
combustion profile from ignition to extinction be observed. Both the TVS-8500 and the FireMapper
began imaging before the fire first entered the fuel plot, but active fire pixels persisted in the last images
of each sequence indicating that combustion had not completely ceased. Figure 12b, for example,
illustrates the FRFD profile for one pixel in the fuel consumption plot that was still burning when the
low-oblique camera stopped collecting images. As such, the radiant heat emitted during the residual
burning of fuels in this pixel remains unaccounted for. Failing to capture ignition and/or extinction
will inevitable yield low estimates of FRED and ultimately affect field-derived relationships between
FRED and fuel consumption, since pre- and post-burn surveys of fuel loads were conducted before
ignition and after extinction. If the complete combustion history cannot be observed, then estimates
of FRED should, at the very least, be compared on the basis of the same temporal integration limits.
For this reason, estimates of FRED compared between the FireMapper and the TVS-8500 were obtained
by setting the integration limits to the first and last times that both imaging systems simultaneously
observed the fuel consumption plot (Figures 12a and 16).
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Table 6. Theoretical and technical issues identified during the Cooney Ridge Fire Experiment and the
Rapid Response project as a whole, organized by spectral, temporal, and spatial themes. Citations
of relevant works associated with these issues are contained herein, whilst references to supporting
figures can be found in the body of the Discussion.

Spectral Bandpass and Response:

• The choice of method for converting a spectral radiance measurement into an estimate of the spectrally
integrated radiant heat flux [25,27,48] depends on the sensor bandpass.

• Sensors with different spectral bandpasses respond differently to the radiant heat emitted by flames,
glowing fuel particles, and smoldering embers [49,50]. Therefore, estimates of FRFD and FRED are
affected by the combustion phase at the time of observation as well as by the evolution of the combustion
phases from ignition to extinction, respectively.

• Most commercial and custom-built radiometers and thermal imaging systems operate at different
wavelengths [51], making direct sensor-to-sensor comparisons difficult.

• Converting “at-sensor” measurements to “at-ground” estimates of FRFD requires knowledge of the
spectrally dependent transmissivity of the intervening clear air and smoke plume [52].

Temporal Resolution and Coverage:

• Although the sampling frequencies should be commensurate with the fire phenomena of interest [53],
different sensor arrangements have different minimum and maximum sampling rates due to, for
example, aircraft turnaround times and storage capacity.

• Numerically integrating FRFD profiles to estimate FRED assumes a constant trajectory of FRFD between
consecutive observations, an assumption that becomes less valid for infrequent observations of dynamic
fire behaviour [53].

• Confident estimates of FRED require complete observations of the entire combustion profile from ignition
to extinction, and failing to do so will result in low estimates of FRED.

• If the complete combustion history is not observed, then sensor-to-sensor comparisons of FRED must be
restricted to the same temporal integration limits.

Spatial Resolution, Coverage and Viewing Geometry:

• Ground extents and ground cell resolutions are affected by a combination of the instrument’s optical
specifications as well as the line-of-sight distance between the sensor and the target. In general, the finer
spatial resolution offered by a ground-based sensor is offset by reduced spatial coverage [24].

• Even if collocated, sensors oriented in different directions (e.g., horizontal versus nadir-looking) will have
different ground footprints. Without knowing the exact ground footprint of two different sensors, it is
impossible to fully explain or compare heat flux estimates.

• Radiant and convective heating of unburned vegetation in adjacent ground cells confounds fire detection
strategies, induces uncertainties in the active fire area, and artificially contributes to FRP.

• Estimates of FRFD based solely on the brightness temperature measured in a single band will be lower
than the fire’s true radiant reaction intensity unless the IFOV is completely filled [54].

• Estimates of FRFD as performed here depend on the subpixel fraction occupied by the active fire [54].
Hence, a larger pixel will result in a lower FRFD when compared to a smaller pixel containing the exact
same fire. Hence, sensor-to-sensor comparisons of FRFD depend on the ground resolution of each sensor.

• The spatial dependence of FRFD on subpixel active fire area is mitigated when measurements are
integrated over time. Although FRED is also calculated with respect to the full ground area of a pixel, the
underlying assumption associated with FRED is that the full ground area of a pixel is burned over the
lifetime of the fire. If the entire area inside a ground resolution cell burns, which is a likely assumption,
then FRED represents the fire’s true heat per unit area.

• The practical advantages of a low-oblique vantage point are offset by extreme view angles and potential
obscuration of the fire due to vegetative cover in the foreground [24].

• Aside from assuming that the fire is an isotropic emitter, calculating the radiant heat flux from different
view angles assumes that pixel brightness temperatures are independent of the orientation of the fuels
and the flame geometry (i.e., independent of the configuration factor between the hot objects and the
detector). This assumption, however, is less valid at extreme observation angles [52,55].

• The radiance emitted by a fire can also be attenuated by tree boles, branches, and foliage before it reaches
the sensor. As with atmospheric transmittance, obscuration of the radiometric signal by vegetation is
spatially dependent upon the amount, arrangement, and condition of the overstory and temporally
dependent upon the consumption of vegetation itself.
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The FBP’s were oriented horizontally (i.e., parallel to the ground) to collect measurements of the
incident radiant heat flux as if it were an object ahead of the fire front, for example a fuel particle or
a human being. The intent of collecting airborne and low-oblique thermal images was to map the
radiant heat flux and energy emitted from the fire. These are two different phenomena: irradiance
versus exitance. For these reasons, the FBP measurements were not compared to the thermal imagery.
Although the radiometer mounted on the AES was oriented to view the ground at 45◦, we were unable
to confidently identify the outline of the ground resolution cell because of the time constraints imposed
by the advancing wildfire. Without knowing their exact ground footprints, it was not possible to
confidently map the AES radiometer measurements onto the airborne or low-oblique imagery; hence,
differences in radiant heat estimates from the AES radiometers cannot be fully explained nor compared
to estimates derived from the thermal imagery. Moreover, it can be contended that the FRFD estimated
from the FBP and AES radiometers is not meaningful anyway, since the values are based on the full
area of the ground resolution cell. Instead, a proper calculation of FRFD from the in situ radiometers
would require the retrieval of the sub-resolution active fire area. Likewise, for estimates derived from
the FireMapper imagery. With a nominal ground resolution of 4.5 m, it is unlikely that the active fire
area completely filled the IFOV of a FireMapper pixel, such as when the fire first entered the fuel
plot. On the occasions when the active fire area is smaller than the pixel area, then FRFD will be
underestimated. Because of larger pixel sizes, estimates of FRFD derived from the FireMapper imagery
were consistently less than those derived from the TVS-8500 imagery with a nominal ground resolution
of 0.8 m. Although sensor-to-sensor differences in the size of the IFOV’s interact with the temporal
variability in the size of the active fire area to confound comparisons of FRFD on an instantaneous
basis, these hindrances are mitigated when the measurements are integrated over time. FRED is also
calculated with respect to the full ground area of a pixel, but the underlying assumption associated
with FRED is that the full ground area of a pixel is burned over the lifetime of the fire. In this regard,
sensor-to-sensor comparisons of FRED are less complicated by differences in spatial resolution.

The improved spatial resolution offered by a ground-based sensor arrangement is offset by
the reduced spatial coverage and, with regard to the low-oblique vantage point, offset by extreme
view angles and potential obscuration of the line-of-site due to vegetative cover in the foreground
(Figure 19a). Aside from assuming that the fire is an isotropic emitter, calculating the radiant heat
flux from different view angles assumes that the pixel brightness temperatures are independent of the
orientation of the fuels and the flame geometry (i.e., independent of the configuration factor between
the hot objects and the detector). This assumption, however, is less valid at extreme observation angles.
In addition to the smoke plume and intervening clear atmosphere, the radiance emitted by a fire can
also be attenuated by tree boles, branches, and foliage. As with atmospheric transmittance, obscuration
of the radiometric signal by the vegetation is spatially dependent upon the structure of the overstory
and temporally dependent upon the consumption of the vegetative cover itself.

From an image processing standpoint, the heating and cooling of the adjacent vegetation and
overhead canopy simultaneously confounds the fire detection strategy and inadvertently contributes
to FRP. Radiative contributions from warm, non-combusting vegetation should not be considered as
FRP for two reasons. First, Equations (2) and (4) both assume that fire is an isotropic emitter; therefore,
any radiative energy emitted by the fire and intercepted by the surrounding vegetation is already
accounted for before it is either reflected [49,50] or absorbed and re-emitted. Second, the vegetation
surrounding the fire is also heated by convection. If FRP is to be strictly interpreted as the rate of
radiative energy released from the combustion zone, then including the radiative flux emitted by
convectively heated vegetation would artificially increase the estimate of FRP. For this same reason,
the radiative flux of the smoke plume immediately above the fire [56,57] should also be neglected
in the measurement of FRP. In general, any additional radiance above the background that is not
directly emitted from gaseous and solid combustion processes makes it difficult to discern active fire
pixels—and thus estimate active fire area—and quantify FRP.
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Addressing the aforementioned theoretical issues obviously requires filling knowledge gaps.
For example, characterizing a sensor’s radiometric response to different subpixel fractions of flaming,
glowing, and smoldering components, or determining the MIR and LWIR transmissivity of a smoke
column can be accomplished in a laboratory. However, translating or applying laboratory results to
field measurements to better understand landscape-level relationships between radiant heat release
and fire effects comes with its own set of caveats and limitations. Hence, the problem of solving
the radiant energy budget also requires a technical solution. Unfortunately, as of yet, there is no
“one-size-fits-all” combination of instrument, data acquisition system, and mounting platform that
provides consistent spectral, temporal, and spatial observations from a broad range of multi-scale
deployment configurations. Consequently, different sensors must be selected on the basis of their
ability to be deployed and perform at specific scales, which in turn makes it difficult to assimilate
datasets of differing spectral, temporal, and spatial resolutions. To this day, more than a decade
after the Cooney Ridge Fire Experiment, scientists are still struggling with the arduous challenge of
assimilating multi-scale measurements collected with incongruous sensors [9,10,58–60].

4.2. Fire Effects

A previous analysis of landscape-level burn severity patterns in relation to pre-fire forest harvest
patterns, conducted across the entire Cooney Ridge wildfire, did reveal significant relationships
between stand-replacing harvest and stand-replacing fire disturbance patterns [42]. However, having
only a single pre-fire fuel plot precluded us from examining pre-fire fuel distributions across the
study site. If a vegetation and fuels monitoring network were already in place, it would be faster
and easier to deploy fire behavior instruments wherever and whenever such plots occurred near an
advancing wildfire.

Spatially distributed field plot and remotely sensed data were required to spatially model and
map patterns in litter and mineral soil cover. FRED and the MESMA soil endmember had a similar
ability to predict percent litter and mineral soil cover (Table 5), therefore either of the predictive maps
in Figure 18 could be considered indicative of spatial variation in soil effects from the fire. While it is
appealing to consider the FRED map a measure of heat dosage akin to fire severity [61], the airborne
FRED measurements in this study convolved the heat release of all fuel components, including from
torching tree crowns, thus combining the canopy and surface fuel components of combustion in the
FRED map; however, it is surface fuel combustion that affects the residual litter or soil cover evident
immediately post-fire. Nor does post-fire hyperspectral imagery, as a purely retrospective indicator
of fire effects, provide an ability to differentiate canopy fuels from residual surface fuels. Our results
suggest that either FRED or post-fire hyperspectral imagery may provide a useful indication of fire
effects, but neither image type is clearly a better predictor. That fire severity is a unitless, subjective
measure and inherently difficult to define only makes the challenge greater [13].

From a remote sensing perspective, broad ground cover categories such as “char” or “green”
or “soil” are often the most readily mapped after a wildfire [4,19,62–64]. Other researchers have
found significant correlations between field-measured ground cover and MESMA predicted fractional
cover [5,65]. These broad fractional cover classes (their presence or absence as well as their condition)
can indicate first-order fire effects on vegetation and soil [66]. They can also be monitored as
second-order fire effects, such as vegetation recovery over time [5,67]. Residual litter, newly deposited
needlecast and downed woody debris provide protection to soils from wind- and water-driven
erosion [68]. Intact forest floor material is important for seed and root regeneration and for seedling
and sapling survival. Vegetation cover and diversity will be affected by altered plant regeneration
strategies and succession [69].

In summary, we found both FRED and hyperspectral image-derived fractional cover maps to
be significant predictors of post-fire litter and mineral soil cover, which is relevant for post-fire site
recovery. Further research, also in other forest or rangeland ecosystems, is needed to determine which
image type may be a better indicator for informing post-fire management decisions. Better post-fire
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maps matter because less litter and more exposed mineral soil on burned hillslopes translate into
less water infiltration and more erosion [14,15]. Areas of high fire severity also tend to exhibit slower
vegetation recovery, allowing greater time for erosion or establishment of invasive species and adding
expense to reforestation efforts.

This study focused most intently on the spatial domain during and immediately after what was
nominally a moderate severity fire in mixed conifer forest type. In the temporal domain, the six plots
revisited in 2004 and 2013 to monitor vegetation recovery were too few to observe a much broader
variation in vegetation response. Additional study is warranted to track the vegetation response, both
near- and long-term, to variable dosages of FRED in other ecosystems. FRED has been found to affect
future growth of mature conifer trees [70]; although as detailed in Table 6, estimating FRED in the
field is difficult due to several complicating factors. In a controlled laboratory environment, however,
conifer seedlings can be exposed to variable FRED dosages [71], which greatly simplifies the spatial
and temporal domain for measuring energy release and fire effects. Clearly, linkages between FRED
dosages and plant injury or other fire effects should be explored both in situ and in the lab. Further
advances in multi-scale measurement capabilities before, during, and after fires are needed to more
mechanistically relate fuels, fire, and fire effects to plant mortality and recovery processes.

5. Conclusions

The 2003 Cooney Ridge Fire Experiment was successful first and foremost because all data were
collected safely, with no accidents or injuries, while fully integrated into the Incident Command
organizational structure. That this was a burnout operation conducted in coordination with an active
wildfire incident provided a good measure of control, while still helping to advance appreciation for
measuring the spatiotemporal complexities in fuels, topography, and weather, and their interactions.
This Case Report exemplifies why prescribed fires are appealing to advance the understanding of
wildfires, especially where the prescribed fires are sufficiently intense to produce crown fire behavior,
as was also demonstrated successfully in boreal forest at FROSTFIRE [72] and in the International
Crown Fire Modeling Experiment [73]. These collective efforts set a precedent for subsequent active
fire research endeavors such as the 2008–2012 Prescribed Fire Combustion and Atmospheric Dynamics
Research Experiment (RxCADRE) [60]. By easing the logistical constraints to safely measure fuels and
other variables prior to ignition, prescribed fires provide relatively safe opportunities for co-located
pre-fire, active fire, and post-fire measurements.

On the other hand, few prescribed fires produce the same range of fire behavior or effects as
observed on free-burning wildfires. The Cooney Ridge Fire Experiment, as a burnout operation,
provided an opportunity to observe fire behavior and effects under extremely dry fuel conditions that
were well outside of normal prescription windows. Similarly, Fire Behavior Assessment Teams were
created in 2002 to find opportunities to collect active fire behavior measurements on wildfires [74].
Gathering observational data on wildfires as safe opportunities arise will and should remain an
essential component of wildland fire science, complementing landscape-level, prescribed fires and
small-scale burning experiments in the field or laboratory.
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